On Wed, May 27, 2020 at 8:50 AM Maxime Ripard maxime@cerno.tech wrote:
The HVS found in the BCM2711 has 6 outputs and 3 FIFOs, with each output being connected to a pixelvalve, and some muxing between the FIFOs and outputs.
Any output cannot feed from any FIFO though, and they all have a bunch of constraints.
In order to support this, let's store the possible FIFOs each output can be assigned to in the vc4_crtc_data, and use that information at atomic_check time to iterate over all the CRTCs enabled and assign them FIFOs.
The channel assigned is then set in the vc4_crtc_state so that the rest of the driver can use it.
Signed-off-by: Maxime Ripard maxime@cerno.tech
drivers/gpu/drm/vc4/vc4_crtc.c | 37 +++++---- drivers/gpu/drm/vc4/vc4_drv.h | 7 +- drivers/gpu/drm/vc4/vc4_kms.c | 142 ++++++++++++++++++++++++++++++++-- drivers/gpu/drm/vc4/vc4_regs.h | 10 ++- 4 files changed, 172 insertions(+), 24 deletions(-)
diff --git a/drivers/gpu/drm/vc4/vc4_crtc.c b/drivers/gpu/drm/vc4/vc4_crtc.c index 580b37ad514d..a6c3f2f907bd 100644 --- a/drivers/gpu/drm/vc4/vc4_crtc.c +++ b/drivers/gpu/drm/vc4/vc4_crtc.c @@ -88,6 +88,7 @@ static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc, struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state); unsigned int cob_size; u32 val; int fifo_lines;
@@ -104,7 +105,7 @@ static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc, * Read vertical scanline which is currently composed for our * pixelvalve by the HVS, and also the scaler status. */
val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel)); /* Get optional system timestamp after query. */ if (etime)
@@ -124,7 +125,7 @@ static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc, *hpos += mode->crtc_htotal / 2; }
cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc->channel);
cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel); /* This is the offset we need for translating hvs -> pv scanout pos. */ fifo_lines = cob_size / mode->crtc_hdisplay;
@@ -211,6 +212,7 @@ vc4_crtc_lut_load(struct drm_crtc *crtc) struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state); u32 i; /* The LUT memory is laid out with each HVS channel in order,
@@ -219,7 +221,7 @@ vc4_crtc_lut_load(struct drm_crtc *crtc) */ HVS_WRITE(SCALER_GAMADDR, SCALER_GAMADDR_AUTOINC |
(vc4_crtc->channel * 3 * crtc->gamma_size));
(vc4_crtc_state->assigned_channel * 3 * crtc->gamma_size)); for (i = 0; i < crtc->gamma_size; i++) HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
@@ -392,7 +394,7 @@ static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) drm_print_regset32(&p, &vc4_crtc->regset); }
if (vc4_crtc->channel == 2) {
if (vc4_crtc->data->hvs_output == 2) { u32 dispctrl; u32 dsp3_mux;
Looks like this hunk is maybe supposed to be in the hvs_output rename patch?
@@ -419,7 +421,7 @@ static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) if (!vc4_state->feed_txp) vc4_crtc_config_pv(crtc);
HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
HVS_WRITE(SCALER_DISPBKGNDX(vc4_state->assigned_channel), SCALER_DISPBKGND_AUTOHS | SCALER_DISPBKGND_GAMMA | (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
@@ -451,7 +453,8 @@ static void vc4_crtc_atomic_disable(struct drm_crtc *crtc, struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
u32 chan = vc4_crtc->channel;
struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(old_state);
u32 chan = vc4_crtc_state->assigned_channel; int ret; require_hvs_enabled(dev);
@@ -530,12 +533,12 @@ static void vc4_crtc_update_dlist(struct drm_crtc *crtc) crtc->state->event = NULL; }
HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel), vc4_state->mm.start); spin_unlock_irqrestore(&dev->event_lock, flags); } else {
HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel), vc4_state->mm.start); }
} @@ -584,7 +587,7 @@ static void vc4_crtc_atomic_enable(struct drm_crtc *crtc, (vc4_state->feed_txp ? SCALER5_DISPCTRLX_ONESHOT : 0);
HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), dispctrl);
HVS_WRITE(SCALER_DISPCTRLX(vc4_state->assigned_channel), dispctrl); /* When feeding the transposer block the pixelvalve is unneeded and * should not be enabled.
@@ -700,7 +703,6 @@ static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); struct drm_plane *plane; struct vc4_plane_state *vc4_plane_state;
@@ -742,8 +744,8 @@ static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, /* This sets a black background color fill, as is the case * with other DRM drivers. */
HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
HVS_WRITE(SCALER_DISPBKGNDX(vc4_state->assigned_channel),
HVS_READ(SCALER_DISPBKGNDX(vc4_state->assigned_channel)) | SCALER_DISPBKGND_FILL); /* Only update DISPLIST if the CRTC was already running and is not
@@ -757,7 +759,7 @@ static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, vc4_crtc_update_dlist(crtc);
if (crtc->state->color_mgmt_changed) {
u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_state->assigned_channel)); if (crtc->state->gamma_lut) { vc4_crtc_update_gamma_lut(crtc);
@@ -769,7 +771,7 @@ static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, */ dispbkgndx &= ~SCALER_DISPBKGND_GAMMA; }
HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
HVS_WRITE(SCALER_DISPBKGNDX(vc4_state->assigned_channel), dispbkgndx); } if (debug_dump_regs) {
@@ -800,7 +802,7 @@ static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
u32 chan = vc4_crtc->channel;
u32 chan = vc4_state->assigned_channel; unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags);
@@ -999,6 +1001,7 @@ static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) old_vc4_state = to_vc4_crtc_state(crtc->state); vc4_state->feed_txp = old_vc4_state->feed_txp; vc4_state->margins = old_vc4_state->margins;
vc4_state->assigned_channel = old_vc4_state->assigned_channel; __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); return &vc4_state->base;
@@ -1060,6 +1063,7 @@ static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { };
static const struct vc4_crtc_data bcm2835_pv0_data = {
.hvs_available_channels = BIT(0), .hvs_output = 0, .debugfs_name = "crtc0_regs", .pixels_per_clock = 1,
@@ -1070,6 +1074,7 @@ static const struct vc4_crtc_data bcm2835_pv0_data = { };
static const struct vc4_crtc_data bcm2835_pv1_data = {
.hvs_available_channels = BIT(2), .hvs_output = 2, .debugfs_name = "crtc1_regs", .pixels_per_clock = 1,
@@ -1080,6 +1085,7 @@ static const struct vc4_crtc_data bcm2835_pv1_data = { };
static const struct vc4_crtc_data bcm2835_pv2_data = {
.hvs_available_channels = BIT(1), .hvs_output = 1, .debugfs_name = "crtc2_regs", .pixels_per_clock = 1,
@@ -1171,7 +1177,6 @@ static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, &vc4_crtc_funcs, NULL); drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
vc4_crtc->channel = vc4_crtc->data->hvs_output; drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
diff --git a/drivers/gpu/drm/vc4/vc4_drv.h b/drivers/gpu/drm/vc4/vc4_drv.h index 9d120aae4af9..73156a53822f 100644 --- a/drivers/gpu/drm/vc4/vc4_drv.h +++ b/drivers/gpu/drm/vc4/vc4_drv.h @@ -450,6 +450,9 @@ to_vc4_encoder(struct drm_encoder *encoder) }
struct vc4_crtc_data {
/* Which channels of the HVS can the output source from */
unsigned int hvs_available_channels;
Maybe /* Bitmask of channels (FIFOs) of the HVS that the output can source from */
/* Which output of the HVS this pixelvalve sources from. */ int hvs_output;
@@ -469,9 +472,6 @@ struct vc4_crtc { /* Timestamp at start of vblank irq - unaffected by lock delays. */ ktime_t t_vblank;
/* Which HVS channel we're using for our CRTC. */
int channel;
u8 lut_r[256]; u8 lut_g[256]; u8 lut_b[256];
@@ -493,6 +493,7 @@ struct vc4_crtc_state { struct drm_mm_node mm; bool feed_txp; bool txp_armed;
unsigned int assigned_channel; struct { unsigned int left;
diff --git a/drivers/gpu/drm/vc4/vc4_kms.c b/drivers/gpu/drm/vc4/vc4_kms.c index 29b75b60d858..db00625c61dd 100644 --- a/drivers/gpu/drm/vc4/vc4_kms.c +++ b/drivers/gpu/drm/vc4/vc4_kms.c @@ -11,6 +11,8 @@
- crtc, HDMI encoder).
*/
+#include <linux/bitfield.h> +#include <linux/bitops.h> #include <linux/clk.h>
#include <drm/drm_atomic.h> @@ -146,6 +148,72 @@ vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state) VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO)); }
+static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
struct drm_atomic_state *state)
+{
struct drm_crtc_state *crtc_state;
struct drm_crtc *crtc;
unsigned char dsp2_mux = 0;
unsigned char dsp3_mux = 3;
unsigned char dsp4_mux = 3;
unsigned char dsp5_mux = 3;
unsigned int i;
u32 reg;
for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
if (!crtc_state->active)
continue;
switch (vc4_crtc->data->hvs_output) {
case 2:
dsp2_mux = (vc4_state->assigned_channel == 2) ? 0 : 1;
break;
case 3:
dsp3_mux = vc4_state->assigned_channel;
break;
case 4:
dsp4_mux = vc4_state->assigned_channel;
break;
case 5:
dsp5_mux = vc4_state->assigned_channel;
break;
default:
break;
}
}
reg = HVS_READ(SCALER_DISPECTRL);
if (FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg) != dsp2_mux)
HVS_WRITE(SCALER_DISPECTRL,
(reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
VC4_SET_FIELD(dsp2_mux, SCALER_DISPECTRL_DSP2_MUX));
reg = HVS_READ(SCALER_DISPCTRL);
if (FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg) != dsp3_mux)
HVS_WRITE(SCALER_DISPCTRL,
(reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
VC4_SET_FIELD(dsp3_mux, SCALER_DISPCTRL_DSP3_MUX));
reg = HVS_READ(SCALER_DISPEOLN);
if (FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg) != dsp4_mux)
HVS_WRITE(SCALER_DISPEOLN,
(reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
VC4_SET_FIELD(dsp4_mux, SCALER_DISPEOLN_DSP4_MUX));
reg = HVS_READ(SCALER_DISPDITHER);
if (FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg) != dsp5_mux)
HVS_WRITE(SCALER_DISPDITHER,
(reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
VC4_SET_FIELD(dsp5_mux, SCALER_DISPDITHER_DSP5_MUX));
Looks like you're writing vc5 bitfields on vc4 where those fields are marked "write zero".
I don't see why you're going to this extra effort to avoid the reg writes for no change -- you've already done a read, which is the expensive part.
+}
static void vc4_atomic_complete_commit(struct drm_atomic_state *state) { @@ -156,11 +224,15 @@ vc4_atomic_complete_commit(struct drm_atomic_state *state) int i;
for (i = 0; i < dev->mode_config.num_crtc; i++) {
if (!state->crtcs[i].ptr || !state->crtcs[i].commit)
struct __drm_crtcs_state *_state = &state->crtcs[i];
struct vc4_crtc_state *vc4_crtc_state;
if (!_state->ptr || !_state->commit) continue;
vc4_crtc = to_vc4_crtc(state->crtcs[i].ptr);
vc4_hvs_mask_underrun(dev, vc4_crtc->channel);
vc4_crtc = to_vc4_crtc(_state->ptr);
vc4_crtc_state = to_vc4_crtc_state(_state->state);
vc4_hvs_mask_underrun(dev, vc4_crtc_state->assigned_channel); }
Looks like this loop could really stand to be for_each_new_crtc_in_state()
clk_set_rate(hvs->core_clk, 500000000);
@@ -172,6 +244,7 @@ vc4_atomic_complete_commit(struct drm_atomic_state *state) drm_atomic_helper_commit_modeset_disables(dev, state);
vc4_ctm_commit(vc4, state);
vc4_hvs_pv_muxing_commit(vc4, state); drm_atomic_helper_commit_planes(dev, state, 0);
@@ -381,8 +454,11 @@ vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
/* CTM is being enabled or the matrix changed. */ if (new_crtc_state->ctm) {
struct vc4_crtc_state *vc4_crtc_state =
to_vc4_crtc_state(new_crtc_state);
/* fifo is 1-based since 0 disables CTM. */
int fifo = to_vc4_crtc(crtc)->channel + 1;
int fifo = vc4_crtc_state->assigned_channel + 1; /* Check userland isn't trying to turn on CTM for more * than one CRTC at a time.
@@ -495,10 +571,66 @@ static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = { .atomic_destroy_state = vc4_load_tracker_destroy_state, };
+#define NUM_OUTPUTS 6 +#define NUM_CHANNELS 3
static int vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) {
int ret;
unsigned long unassigned_channels = GENMASK(NUM_CHANNELS - 1, 0);
struct drm_crtc_state *crtc_state;
struct drm_crtc *crtc;
int i, ret;
for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
struct vc4_crtc_state *vc4_crtc_state =
to_vc4_crtc_state(crtc_state);
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
bool is_assigned = false;
unsigned int channel;
if (!crtc_state->active)
continue;
/*
* The problem we have to solve here is that we have
* up to 7 encoders, connected to up to 6 CRTCs.
*
* Those CRTCs, depending on the instance, can be
* routed to 1, 2 or 3 HVS FIFOs, and we need to set
* the change the muxing between FIFOs and outputs in
* the HVS accordingly.
*
* It would be pretty hard to come up with an
* algorithm that would generically solve
* this. However, the current routing trees we support
* allow us to simplify a bit the problem.
*
* Indeed, with the current supported layouts, if we
* try to assign in the ascending crtc index order the
* FIFOs, we can't fall into the situation where an
* earlier CRTC that had multiple routes is assigned
* one that was the only option for a later CRTC.
*
* If the layout changes and doesn't give us that in
* the future, we will need to have something smarter,
* but it works so far.
*/
for_each_set_bit(channel, &unassigned_channels,
sizeof(unassigned_channels)) {
if (!(BIT(channel) & vc4_crtc->data->hvs_available_channels))
continue;
vc4_crtc_state->assigned_channel = channel;
unassigned_channels &= ~BIT(channel);
is_assigned = true;
break;
}
if (!is_assigned)
return -EINVAL;
I think this logic is just
int matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels; if (matching_channels) { vc4_crtc_state->assigned_channel = ffs(matching_channels) - 1; unassigned_channels &= ~BIT(channel); } else { return -EINVAL; }
If you're changing the assignment of a channel, I think you're going to need to set state->mode_changed or something to trigger a full modeset, so we don't try to just rewrite the channel of an existing CRTC while scanning out.